Enthalpy

1. Ammonia is used to make nitric acid. The first stage of the reaction is shown below.

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-908 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Standard enthalpy changes of formation, $\Delta_{f} H^{\circ}$, are given in the table.

Substance	$\boldsymbol{\Delta}_{\mathbf{f}} \boldsymbol{H}^{\text {} \text { ' }^{\mathbf{~ k J ~ m o l}}}{ }^{\mathbf{- 1}}$
$\mathrm{NH}_{3}(\mathrm{~g})$	-46
$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-242

i. State the conditions of temperature and pressure used for standard enthalpy measurements.

Temperature

Pressure
ii. Calculate the standard enthalpy change of formation for $\mathrm{NO}(\mathrm{g})$.

Give your answer to a whole number.
\qquad
2. This question is about energy changes and rate of reaction.

Magnesium reacts with aqueous silver nitrate, $\mathrm{AgNO}_{3}(\mathrm{aq})$, as in equation 23.1.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

Equation 23.1

A student carries out an experiment to determine the enthalpy change of this reaction, $\Delta_{r} H$.

- The student adds $25.0 \mathrm{~cm}_{3}$ of $0.512 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}$ to a polystyrene cup.
- The student measures the temperature of the solution.
- The student adds a small spatula measure of magnesium powder, stirs the mixture and records the maximum temperature

Temperature readings

Initial temperature	$=19.5^{\circ} \mathrm{C}$
Maximum temperature	$=47.5^{\circ} \mathrm{C}$

i. Calculate $\Delta_{r} H$, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction shown in equation 23.1.

Give your answer to an appropriate number of significant figures.
Assume that the density and specific heat capacity, c, of the solution are the same as for water and that all the aqueous silver nitrate has reacted.

$$
\Delta_{r} H=\begin{array}{rr}
\\
& \mathrm{kJ}^{-1} \\
\mathrm{~mol}^{-1}[4]
\end{array}
$$

ii. At the end of the experiment, the student adds a few drops of aqueous sodium chloride to the reaction mixture in the polystyrene cup to test whether all the aqueous silver nitrate has reacted.

Explain how the results would show whether all the aqueous silver nitrate has reacted. Include an equation with state symbols in your answer.
\qquad
\qquad
\qquad
\qquad

3(a). Hydrogen reacts with chlorine to form hydrogen chloride, HCl :
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HC} /(\mathrm{g}) \quad \Delta \mathrm{H}=-184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Table 3.1 shows bond enthalpies.

Bond	Bond Enthalpy $/ \mathbf{k J ~ m o l}^{\mathbf{- 1}}$
$\mathrm{H}-\mathrm{H}$	+436
$\mathrm{Cl}-\mathrm{Cl}$	+243

Table 3.1
Calculate the bond enthalpy for the $\mathrm{H}-\mathrm{C} /$ bond from the information above.
bond enthalpy =
b). 'Enthalpy change of vaporisation' is the enthalpy change when one mole of a substance changes from a liquid to a gas at its boiling point.
i. Write an equation, including state symbols, to represent the enthalpy change of vaporisation of bromine.
ii. Suggest whether the enthalpy change of vaporisation of bromine is exothermic or endothermic.

Explain your answer.
\qquad
\qquad
\qquad
4. The reaction of ammonia, NH_{3}, with oxygen to form nitrogen monoxide, NO , is an important industrial process.

The equation for this reaction is shown in equilibrium 4.1 below.

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=-905 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \text { Equilibrium } 4.1
$$

The forward reaction in equilibrium 4.1 converts NH_{3} into NO .
i. Complete the enthalpy profile diagram for this reaction.

On your diagram:

- Label the activation energy, E_{a}
- Label the enthalpy change of reaction, ΔH
- Include the formulae of the reactants and products.

[2]
ii. $\quad 5.10$ tonnes of NH_{3} are converted into NO .

Calculate the energy released, in kJ , for this conversion.
Give your answer in standard form and to an appropriate number of significant figures.
5. Bromine reacts with iodine to form iodine monobromide, IBr .

The table below lists some average bond enthalpies which are required in different parts of this question.

Bond	Average bond enthalpy / kJ mol
$\mathrm{Br}-\mathrm{Br}$	+193
$\mathrm{I}-\mathrm{I}$	+151
$\mathrm{I}-\mathrm{Br}$	+175

i. Average bond enthalpy is the enthalpy change for the breaking of 1 mole of bonds in gaseous molecules.

Why do Br_{2} and I_{2} not exist in the gaseous state under standard conditions?
\qquad
\qquad
ii. Calculate the enthalpy change of formation, $\Delta{ }_{f} H$, for IBr .
$\Delta_{f} H=$
$\mathrm{kJ} \mathrm{mol}^{-1}$ [2]
6. This question is about alkenes.

The combustion of ethene is shown in equation 25.1 below.

i. Explain, in terms of bond breaking and bond forming, why a reaction can be exothermic.
\qquad
\qquad
\qquad
\qquad
ii. Average bond enthalpies are shown in the table.

Bond	Average bond enthalpy /kJ mol $^{-1}$
O-H	+464
O $=\mathrm{O}$	+498
C -H	+413
C $=\mathrm{O}$	+805

Calculate the average bond enthalpy of the $\mathrm{C}=\mathrm{C}$ bond. Use the average bond enthalpies in the table and equation 25.1.
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}[3]$

7(a). The equation for the complete combustion of cyclohexane is shown below.

$$
\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Standard enthalpy changes of formation, $\Delta_{f} H^{\ominus}$, are shown in the table.

Substance	$\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta_{\mathrm{f}} \boldsymbol{H}^{\ominus} / \mathbf{k J ~ m o l}^{-1}$	-156.3	-393.5	-285.8

Calculate the standard enthalpy change of combustion, $\Delta_{c} H^{\theta}$, of cyclohexane.
\qquad
(b). Alkanes are saturated hydrocarbons with the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$.

A student carries out an experiment to measure the enthalpy change of combustion, $\Delta_{\mathrm{c}} H$, of hexane.

The student finds that combustion of 1.29 g of hexane changes the temperature of 200 g of water from $20.5^{\circ} \mathrm{C}$ to $65.5^{\circ} \mathrm{C}$.
i. Calculate the enthalpy change of combustion, $\Delta_{\mathrm{c}} \mathrm{H}$, of hexane, in $\mathrm{kJ} \mathrm{mol}^{-1}$.

Give your final answer to an appropriate number of significant figures.

$$
\Delta_{\mathrm{c}} H
$$

$\mathrm{kJ} \mathrm{mol}^{-1}[4]$
ii. The calculated value of $\Delta_{c} H$ for hexane from this experiment is different from the data book value.

Suggest two reasons for this difference.

1 \qquad

2
8. Catalysts can be used to change the rate of some chemical reactions.
i. Zinc and sulfuric acid react together to form a solution of zinc sulfate, ZnSO_{4}, and hydrogen gas. The reaction is exothermic.

The rate of the reaction increases when a catalyst is added.

- Complete the enthalpy profile diagram for this reaction using the formulae of the reactants and products.
- Label activation energies, $\boldsymbol{E}_{\mathrm{a}}$ (without catalyst) and $\boldsymbol{E}_{\mathrm{c}}$ (with catalyst).
- Label the enthalpy change of reaction, $\boldsymbol{\Delta H}$.

[3]
ii. Using a Boltzmann distribution, explain how a catalyst increases the rate of a chemical reaction.

Include a labelled sketch of your Boltzmann distribution on the grid below. Label the axes and any other important features.

Your answer needs to be clear and well organised using the correct terminology.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9(a). This question is about different ways of determining enthalpy changes.
A student carries out an experiment to determine directly the enthalpy change of reaction, ΔH_{r}, shown below.

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

- The student measures the initial temperature of $25.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CuSO}_{4}(\mathrm{aq})$.
- The student adds an excess of magnesium powder and stirs the mixture.
- The student measures the maximum temperature of the solution.

Results

Initial temperature of solution $\quad=21.5^{\circ} \mathrm{C}$
Maximum temperature of solution $=63.0^{\circ} \mathrm{C}$
Density of the solution $=1.00 \mathrm{~g} \mathrm{~cm}^{-3}$; specific heat capacity of the solution $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.
i. Calculate the enthalpy change of reaction, ΔH_{r}, in $\mathrm{kJ} \mathrm{mol}^{-1}$.

Give your answer to three significant figures.
$\Delta H_{r}=$ \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
ii. The student weighed out enough magnesium so that it would be in excess by at least 25%. The student had access to a two decimal-place balance.

Calculate the minimum mass of magnesium that the student would need to weigh out on this balance.
(b). Enthalpy changes of formation can be determined indirectly from standard enthalpy changes of combustion, $\Delta H_{\mathrm{c}} \ominus$.

Three enthalpy changes of combustion are shown below.

Substance	$\boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{c}} \ominus / \mathbf{k J} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{C}(\mathrm{s})$	-394
$\mathrm{H}_{2}(\mathrm{~g})$	-286
$\mathrm{C}_{9} \mathrm{H}_{20}(\mathrm{l})$	-6125

i. Define standard enthalpy change of combustion.

Include the standard conditions that are used.
\qquad
\qquad
\qquad
ii. The equation that represents the enthalpy change of formation, ΔH_{f}, of nonane is shown below.

Calculate the standard enthalpy change of formation of nonane.

$$
9 \mathrm{C}(\mathrm{~s})+10 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{9} \mathrm{H}_{20}(\mathrm{I})
$$

\qquad
(c). The bond enthalpy for the bond in carbon monoxide can be calculated from the information below.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H=+210 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Bond	Average bond enthalpy / kJ mol
$\mathbf{- 1}$	
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{O}-\mathrm{H}$	464
$\mathrm{H}-\mathrm{H}$	436

i. What is meant by the term average bond enthalpy?
\qquad
\qquad
ii. Calculate the bond enthalpy for the bond in carbon monoxide.

Show your working.

> bond enthalpy =
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

10(a). Aqueous lead(II) nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, and aqueous potassium iodide, $\mathrm{KI}(\mathrm{aq})$, react together. The equation is shown below.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{Pbl}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

A student carries out an experiment to determine the enthalpy change of reaction, $\Delta_{r} H$, of this reaction.

The student follows the method outlined below.

- Add $50.0 \mathrm{~cm}^{3}$ of $1.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ to a polystyrene cup.
- Measure out $50.0 \mathrm{~cm}^{3}$ of a solution of $\mathrm{KI}(\mathrm{aq})$, which is in excess.
- Measure the temperature of both solutions.
- Add the $\mathrm{KI}(\mathrm{aq})$ to the polystyrene cup, stir the mixture and record the maximum temperature.

Temperature readings

Initial temperature of both solutions $=19.5^{\circ} \mathrm{C}$
Maximum temperature of mixture $=30.0^{\circ} \mathrm{C}$
Calculate $\Delta_{r} H$, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction shown in the equation above.
Give your answer to an appropriate number of significant figures.
Assume that the density of all solutions and specific heat capacity, c, of the reaction mixture is the same as for water.

$$
\Delta_{r} H=.
$$

\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ [4]
(b). Write an ionic equation for the reaction that the student carries out.

Include state symbols.
(c). The $50.0 \mathrm{~cm}^{3}$ of $\mathrm{KI}(\mathrm{aq})$ used inthe experiment contains 10% more KI than is needed to react with $50.0 \mathrm{~cm}^{3}$ of $1.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{Pbl}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of KI that the student used.
11. Nitrogen forms several different oxides.
$\mathrm{N}_{2} \mathrm{O}$ is a useful anaesthetic and NO has been linked to the depletion of ozone in the stratosphere.
The standard enthalpy changes of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO are given in the table.

Compound	$\boldsymbol{\Delta}_{\mathbf{f}} \boldsymbol{H}^{\boldsymbol{\ominus}} / \mathbf{k J ~ m o l}^{\mathbf{- 1}}$
$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$	+82.0
$\mathrm{NO}(\mathrm{g})$	+90.2

i. Explain, in terms of bond breaking and bond making, why the enthalpy change of formation of NO is endothermic.
\qquad
\qquad
\qquad
ii. Draw a fully labelled enthalpy profile diagram to represent the enthalpy change of formation of $\mathrm{N}_{2} \mathrm{O}$.

The formulae, with state symbols, of the reactants and products should be included as part of the diagram.

You are not expected to show the activation energy for the reaction.

12. Butan-2-ol can be prepared using two different methods.

Method 1

H

$\xrightarrow[\mathrm{NaOH}(\mathrm{aq})]{\text { ? }}$
butan-2-ol

Average bond enthalpies can be used to calculate enthalpy changes.
i. What is meant by the term average bond enthalpy?
\qquad
\qquad
\qquad
\qquad
ii. Calculate the enthalpy change of reaction, ΔH_{r}, for preparing 1 mol of butan-2-ol by Method 1.

Average bond enthalpies are given below.

Bond	Average bond enthalpy $/ \mathbf{k J ~ m o l}^{-1}$
O-H	464
C-H	413
C-C	347
C-O	358
C=C	612

3.2.1 Enthalpy Changes

13(a). A branched-chain alcohol J is a liquid and has the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$.
A student does an experiment to measure the enthalpy change of combustion, ΔH_{c}, of alcohol \mathbf{J}.
i. The student burns alcohol \mathbf{J} using the apparatus below.

The student found that combustion of 1.54 g of alcohol \mathbf{J} changes the temperature of 180 g of water from $22.8^{\circ} \mathrm{C}$ to $75.3^{\circ} \mathrm{C}$.

The specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.

- Calculate the amount, in mol, of alcohol \mathbf{J} that burns.
- Calculate the enthalpy change of combustion, ΔH_{c}, of alcohol \mathbf{J}, in $\mathrm{kJ} \mathrm{mol}^{-1}$.

Give your final answer to three significant figures.

$$
\Delta H_{\mathrm{c}}=
$$

\qquad kJ mı
ii. The calculated value of ΔH_{c} from this experiment is different from the value obtained from data books.

Apart from heat loss, suggest two reasons for the difference.
Assume that the calculation has been carried out correctly.
\qquad
\qquad
\qquad
(b). The enthalpy change of combustion for alcohol \mathbf{J} can also be determined indirectly from standard enthalpy changes of formation.
i. Write an equation, including state symbols, for the chemical change that represents the standard enthalpy change of formation of the liquid alcohol $\mathrm{J}, \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$.
ii. The equation for the complete combustion of alcohol \mathbf{J} is shown below.

$$
\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}(\mathrm{I})+71 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Enthalpy changes of formation, ΔH_{f}, are shown in the table.

Substance	$\mathbf{C}_{5} \mathbf{H}_{12} \mathbf{O}(\mathbf{I})$	$\mathbf{C O}_{2} \mathbf{(g)}$	$\mathbf{H}_{2} \mathbf{O}(\mathbf{I})$
$\Delta H_{\mathrm{f}} / \mathrm{kJ} \mathrm{mol}^{-1}$	-366	-394	-286

Calculate the enthalpy change of combustion, ΔH_{c}, of alcohol \mathbf{J} from the information given above.
$\Delta H_{c}=$ \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ [3]

14(a). This question is about the determination of enthalpy changes.
A student carries out an experiment to find the enthalpy change of reaction, ΔH_{r}, for the reaction below.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HC} /(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

In the experiment, 3.18 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are added to 50.0 g of $2.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, an excess.
The temperature of the reaction mixture increases by $5.5^{\circ} \mathrm{C}$.
Calculate ΔH_{r}, in $\mathrm{kJ} \mathrm{mol}^{-1}$.
Give your answer to three significant figures.
The specific heat capacity, c, of the reaction mixture is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.
$\Delta H_{r}=$ \qquad kJ mol ${ }^{-1}$ [4]
(b). The booster rocket of a spacecraft uses a mixture of aluminium and ammonium chlorate(VII), $\mathrm{NH}_{4} \mathrm{C} / \mathrm{O}_{4}$, as a fuel. The equation and some enthalpy changes are shown below.

$$
3 \mathrm{~A} /(\mathrm{s})+3 \mathrm{NH}_{4}{\mathrm{C} / \mathrm{O}_{4}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{AlCl}_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{NO}(\mathrm{~g}) \quad \Delta H=-2677 \mathrm{~kJ} \mathrm{~mol}^{-1} .}^{2}
$$

Substance	Standard enthalpy change of formation, $\Delta H_{f} / \mathrm{kJ}$
$\mathrm{NH}_{4} \mathrm{C} / \mathrm{O}_{4}(\mathrm{~s})$	-295
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1676
$\mathrm{A} / \mathrm{Cl}_{3}(\mathrm{~s})$	-704
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-242

i. What is meant by the term standard enthalpy change of formation? Give the standard conditions.
\qquad
\qquad
\qquad
\qquad
\qquad
ii. Write the equation, including state symbols, for the reaction that represents the standard enthalpy change of formation of $\mathrm{NH}_{4} \mathrm{C}_{/} \mathrm{O}_{4}(\mathrm{~s})$.
iii. Calculate the enthalpy change of formation of $\mathrm{NO}(\mathrm{g})$ using the data above.

15(a). Hydrogen iodide, HI , is a colourless gas that can be made from the reaction of hydrogen, H_{2}, and iodine, I_{2}.

This reversible reaction is shown in equilibrium 3.1 below.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \Delta H=-9 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \text { equilibrium } 3.1
$$

The activation energy for the forward reaction is $173 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Calculate the activation energy, E_{a}, for the reverse reaction.

$$
E_{\mathrm{a}}(\text { reverse reaction })=\text {.. } \mathrm{kJ} \mathrm{~mol}{ }^{-1} \text { [1] }
$$

(b). When the reverse reaction takes place hydrogen iodide, HI , decomposes to form iodine and hydrogen.

Calculate the enthalpy change when $336 \mathrm{dm}^{3}$ of hydrogen iodide, measured at room temperature and pressure, decomposes.

Include the sign for enthalpy change in your answer.
(c). Calculate the bond enthalpy for the $\mathrm{H}-\mathrm{I}$ bond in equilibrium 3.1, given the following information.

Bond	Bond Enthalpy/ kJ mol ${ }^{-1}$
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{I}-\mathrm{I}$	151

bond enthalpy \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ [2]
(d). Complete the enthalpy profile diagram below for the forward reaction in equilibrium 3.1.

On your diagram:

- Label the activation energy, E_{a}
- Label the enthalpy change of reaction, ΔH
- Include the formulae of the reactants and products.

16. This question looks at neutralisation reactions.

A student carries out an experiment to determine the enthalpy change for a neutralisation reaction.

The student measures out $35.0 \mathrm{~cm}^{3}$ of $2.40 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ and $35.0 \mathrm{~cm}^{3}$ of $1.20 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$.
The temperature of each solution is $19.5^{\circ} \mathrm{C}$.
The student mixes the solutions. The KOH is all neutralised and the maximum temperature reached is $36.0^{\circ} \mathrm{C}$.
i. Write the overall equation for the reaction that takes place.
ii. Calculate the enthalpy change for the reaction between 1 mol KOH and 1 mol HCl .

Assume that the density of the mixture is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$ and that the specific heat capacity for the solution is the same as for water.

$$
\Delta H=
$$

iii. Explain, why the answer to (ii) is the enthalpy change of neutralisation.
\qquad
iv. In this experiment, the student uses a thermometer with an uncertainty of $\pm 0.5^{\circ} \mathrm{C}$ in each reading.

Calculate the percentage uncertainty in the temperature rise.
percentage uncertainty =
\% [1]

17(a). Butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, is a highly flammable gas, used as a fuel for camping stoves. Butane reacts with oxygen as in the equation below:

$$
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+6.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Explain why this equation represents the standard enthalpy change of combustion of butane.
(b). Butane can be produced from decane, $\mathrm{C}_{10} \mathrm{H}_{22}$, as shown in the equation below.
$\mathrm{C}_{10} \mathrm{H}_{22}(\mathrm{I}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+2 \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})$
Standard enthalpy changes of combustion, $\Delta_{\mathrm{c}} H$, are shown in the table below.

Substance	$\boldsymbol{\Delta}_{\mathrm{c}} \boldsymbol{H} \ominus / \mathbf{k J ~ m o l}^{\mathbf{- 1}}$
$\mathrm{C}_{10} \mathrm{H}_{22}(\mathrm{I})$	-6778
$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$	-2877
$\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})$	-2058

Calculate the standard enthalpy change of reaction, $\Delta_{r} H \ominus$, for the reaction. Include the sign.
$\mathrm{C}_{10} \mathrm{H}_{22}(\mathrm{I}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+2 \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})$
$\Delta_{r} H \ominus=$
. $\mathrm{JJ} \mathrm{mol}^{-1}$

